Solution to the Finite Barrier Problem

The finite barrier problem helps us understand that a particle can pass though a barrier
that it doesn’t have enough energy to pass through. Likewise, sometimes the particle
will “bounce back” from hitting a barrier even if it has enough energy to overcome it.

The potential surface is as follows:
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It must be noted that the general solution to the wavefunction in the middle barrier
depends on whether the energy is greater or less than the potential energy. If E<V, then

k, =+2m(E -V)/h? = -2m(V — E)/h? =i 2m(V — E)/h? since E-V is negative in

this case. As a result, the “general solution” wavefunction that is applicable if E>V:

becomes: Y;; = Ce™*2* + De2* when E<V. Thus, we have to solve the transmission
probability as a function of whether the energy is greater or less than the potential
energy.

In region |, the incoming “A” wave can reflect after hitting a wall to create a “B” wave:
lp[ — Aeiklx + Be—iklx

However, in region lll, if the particle passes through the barrier it will travel to the right
forever, so there is no need to have any wave except a right-moving “E” wave:

Y, = Ee™*. Note that the momentum ki is the same as in region |.



Transmission, E<V
@X=0

Continuous (the wavefunctions are equal):
Aeiklx + Be—iklx — Ce—kzx + Dekzx
Since x=0:
A+B=C+D (1)
Smooth (the derivatives are equal):
ik, Ae 1% — i, Be~t1¥ = —k,Ce*2* + k,Dek2*
Since x=0:
ikyA — ikyB = —k,C + k,D (2)
Now the strategy is to define A in terms of C and D by eliminating B:
since B=C+ D — A, insert this into (2):
ikyA — ik, (C+D —A) = —k,C + k,D
ikyA — ik,C — ikyD + ik;A = —k,C + k,D
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Now we just have to define C and D in terms of E to determine %. To do this we have to
look at the x=L side.

@X=L
Continuous (the wavefunctions are equal):
Ce k2L 4 pekel = Eetkil
Now we will solve for C in terms of E by eliminating D:
Dek2l = Eetk1l — Ce~k2L and by multiplying by e ~*2L:
D = Eeikilg=kaol _ (p=2k;L (4)

Smooth (the derivatives are equal):



_kzce_kzL + kzDekzL = iklEeile (5)
Insert (4) into (5):

_kZCe—kzL + kz(Eeilee_kzL _ Ce—ZkzL)ekzL — iklEeile
Now just do a lot of factoring to get C in terms of E:

—k,Ce %2l 4 k,Eetkilekelo=kol _ | Ceo=2kalgkal = jk, Eetkal

9.

3 —kyCekal — e, Ce kel = —l,Eetkal + ik, Eetkil
© .

:_l; _Zkzce_kzL == _Eelle(kz - lkl)

6- _ e*1Ll(k,—iky)

'Q_Jl_ ¢=- —2k,e—kaL

6- etk1l (g, —ik,)

5 C = E—Zkzeszﬁ (6)

Done! Now we have to start over to solve D in terms of E.
Continuous (the wavefunctions are equal):

Ce—kzL + DekzL — Eeile

Now we will solve for D in terms of E by eliminating C:

Ce k2l = Eetk1l — pek2l  and by multiplying by e*2%:

C = EelkilgkzL _ [)p2kalL (7)

Now we can insert eq. (6) into (7), but instead | will do this in a more analogous manner
as above because | am comfortable with this route at this point.

Using the fact that the equations are smooth (the derivatives are equal):
—k,Ce~*2L + k,Dekel = jk Eetkl (5)

Insert (7) into (5):

_kz(EeileekzL _ DeZkzL)e—kzL + k,Dekel = iklEe”‘lL

Now just do a lot of factoring to get D in terms of E:

—Ekyetfilekelg=kol 4 Dl g2kelg=kal 4 |, Dekel = jk Eetkil

kzDekzL + kzDekzL == iklEeile + szeile - Eeile(kz + lkl)



etk1l(ky+iky)

D=E— 5T (8)

Now we are going to take equation (3):

. _ eile(kz—ikl) _ eile(k2+ik1)_
And p|Ug In eq. (6) forC = EZkze—_kZL and (8) forD = EW
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Now we just try to simplify and factor variables out the wazoo:
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Here is about as far as | can take it in terms of factoring:

E 4ik1kze_ik1L

= (9)

Z - e_kZL(kz+ik1)2—ek2L(k2—ik1)2




Transmission, E>V
@X=0
Continuous (the wavefunctions are equal):
Aeif1x 4 Be-ikix — Cpikax 4 po-ikax
Since x=0:
A+B=C+D (1)
Smooth (the derivatives are equal):

ik Aet*1* — ik, Be~#1* = jk,Cetke* — jk,De~ kX

Since x=0:
ik;A —ik,B = ik,C — ik,D Note we can eliminate all the i’s:
klA - le = sz - kzD (2)

Now the strategy is to define A in terms of C and D by eliminating B:
since B = C + D — A, which we insert into (2):

kyA—k(C+D —A)=k,C—ky,D

kA — k,C — k;D + kA = k,C — k,D

ZklA == sz - kzD + k1C + le

uoneoi|duwis

2kiA = C(ky + ki) — D(ky — kq) (3)

Now we just have to define C and D in terms of E to determine %. To do this we have to
look at the x=L side.

@X=L
Continuous (the wavefunctions are equal):
Celkzl 4 pe—ikel — Epikal
Now we will solve for C in terms of E by eliminating D:
De~tk2l = Eetkil — Cetk2l gnd by multiplying by etk2l:

D = EeileeikzL _ CeZikzL (4)



Smooth (the derivatives are equal):

k,Cetk2l — ,De~tk2l = |, Eetkal (5)
Insert (4) into (5):

kzceikzL _ kz(EeileeikzL _ CezikzL)e—ikzL — klEe”‘lL

Now just do a lot of factoring to get C in terms of E:

W kZCeikzL _ kz(EeileeikzL _ CezikzL)e—ikzL — klEe”‘lL

_g kZCeikzL _ szeileeikzLe—ikzL + kZCeZikzLe—ikzL — klEe”‘lL
E_'i k,Ce'f2l + k,Cetkel = | Eetk1l + k,Eetkil

gl_ 2k,Cetk2l = Eetkal(k, + k,)

SV ¢-peltitn (6)

Done! Now we have to start over to solve D in terms of E.

Continuous (the wavefunctions are equal):

Celksl 4 pe-iksl = peikil

Now we will solve for D in terms of E by eliminating C:

Cetk2l = Eetkal — pe=ik2l gnd by multiplying by e~zL:

C = Eelkilo=iksl _ po=ikalg=iksl — Fpilki=ko)L _ pp—2ikslL (7)

Now we can insert eq. (6) into (7), but instead | will do this in a more analogous manner
as above because | am comfortable with this route at this point.

Using the fact that the equations are smooth (the derivatives are equal):
k,Ce*2l — k,De~2L =k, Eetkal (5)
Insert (7) into (5):

Now just do a lot of factoring to get D in terms of E:
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Now we are going to take equation (3):
ZklA = C(kz + kl) - D(kz - kl)

(k1+k2)
lkzL

ikqL _
and (8) for D = E ke,

zkze—LkzL

And plug in eq. (6) for ¢ = E £

ekl (ky+ky)

ik1L _
2k, A = Eﬁﬂ(k2 +ky) — B kaka)

Zkze—ikzL

(ky = k1)

Now we just try to simplify and factor variables out the wazoo:

1L(k; +k3) il (e —ky)
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= E 2k
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Here is about as far as | can take it in terms of factoring:

E _ 4k kye k1l
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On the next page we will fit these results (the %T as a function of energy above and
below the barrier) together in a graph.



Results!

Now we take the two equations for the %T, where energy is below and above the
potential energy barrier, and plot them together using Matlab. To simulate a real particle
the following parameters were used:

mass = an electron = 9.109x103" kg, Length =1 nm = 1x10° m

So this is an electron hitting a ~1 nm barrier. Note that the classical %T is just O if the

particle’s energy is below the barrier and 100% if it has more energy than the barrier
|E|?
1412
is a finite chance of passing through the barrier even though the particle doesn’t have
enough energy to do so!

(dotted line). However, we can see via — that quantum mechanics stipulates that there
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Note that the %T is shown for three
barriers of increasing strength. Notice
how, in the case of a large barrier (red
line), that increasing the energy varies
from “helping” the electron cross the
barrier, then minimizes, and then
increases the %T a few times as the
particle has greater kinetic energy.
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Here are 3-D plots that represent the | - 187 eV
same:
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