Separability of the 2D Particle in a Circle Problem

L

If we don’t assume that the 2D rigid rotor has a fixed “r’ then we are solving the particle-
in-a-circle problem. It’s just like a particle in a 2D box except the box is round.
This problem still uses cylindrical coordinates and is of the form HY = E - ¥
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We assumed that ¥(r,¢) = P(r) - (), i.e. the solution is separable. Can you show
that the Hamiltonian above is in fact separable?

Answer: First, bring over the constants:
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And apply the separated wavefunction on the right and divide by the same on the left:
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Simplify a bit more:
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Now multiply by r2:
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And you can now bring the Energy term to the right to group it with the radial part:
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You are now left with two differential equations:
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and:
r2 9%¥(r) r 0¥(r) 2-mass .
Y(r) or? Y(r) or h?

the sum of which is equal to a constant, which is 0.




Angular Part:
If we assume that W(¢) = e!™®, the first mini-Schrodinger equation is:
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There isn’t anything else to examine with this part of the problem, especially because

the radial one is the part that determines the energy.
Radial Part:
We are left with the radial equation:
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where m is still 0, +1, +2, etc. Note how the radial is equal to +m?, so it can effectively
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“‘wipe out” the effect of the rotational energy and still yield the total energy E. You can
make it look more like a Schrodinger equation by bringing W(r) over to the right:
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The solution ¥,,(r) is called a
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To solve the energy, you have
0 5 10 15 20
to know where ¥,(r)=0 (a r

boundary condition), which then gives you the energy. The graph below shows that

Y, _o(r) =0 for the m=0 state occurs at r = 2.4048. This allows you to calculate its
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energy via: Ey =

) , Where the radius of the box is the boundary condition.
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