
Separability of the 2D Particle in a Circle Problem 

If we don’t assume that the 2D rigid rotor has a fixed “r” then we are solving the particle-

in-a-circle problem. It’s just like a particle in a 2D box except the box is round. 

This problem still uses cylindrical coordinates and is of the form ĤΨ = E ∙ Ψ  
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We assumed that Ψ(r, ϕ) = Ψ(r) ∙ Ψ(ϕ), i.e. the solution is separable. Can you show 

that the Hamiltonian above is in fact separable? 

Answer: First, bring over the constants: 
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And apply the separated wavefunction on the right and divide by the same on the left: 
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Simplify a bit more: 
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Now multiply by r2: 
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And you can now bring the Energy term to the right to group it with the radial part: 
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You are now left with two differential equations:  

1

Ψ(ϕ)

∂2Ψ(ϕ)

∂ϕ2
 

and:  

r2

Ψ(r)

∂2Ψ(r)

∂r2
+

r

Ψ(r)

∂Ψ(r)

∂r
+

2 ∙ mass

ℏ2
E ∙ r2 

the sum of which is equal to a constant, which is 0.  



Angular Part: 

If we assume that Ψ(ϕ) = 𝑒𝑖∙𝑚∙ϕ, the first mini-Schrodinger equation is:  
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There isn’t anything else to examine with this part of the problem, especially because 

the radial one is the part that determines the energy. 

Radial Part: 

We are left with the radial equation:  
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where m is still 0, ±1, ±2, etc. Note how the radial is equal to +m2, so it can effectively 

“wipe out” the effect of the rotational energy and still yield the total energy E. You can 

make it look more like a Schrodinger equation by bringing Ψ(r) over to the right: 
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The solution Ψ𝑚(r) is called a 

Bessel function, which is like an 

“erf” in that there isn’t a simple 

analytical way to express it. 

There is a solution for Ψ𝑚(r) for 

every value of m.  Shown here 

are a few Bessel functions, 

were you can see a different 

wavefunction for every m value. 

To solve the energy, you have 

to know where Ψ𝑚(r) = 0 (a 

boundary condition), which then gives you the energy. The graph below shows that 

Ψ𝑚=0(r) = 0  for the m=0 state occurs at r = 2.4048. This allows you to calculate its 

energy via: E0 =
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 , where the radius of the box is the boundary condition. 
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