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The “erf” function itself is used to calculate the area under a bell-shaped (i.e. Gaussian)

The “erf’ identity:

curve. Bell-shaped curves represent probability for certain phenomena such as the
grade distribution of a class. The area of the curve can provide additional information;
for example, the area over a certain range represents the probability of getting a certain
letter grade. We also used the “erf” function in class to determine things like the average
velocity of a gas molecule, or the probability that something is moving “up”.

To do so we use this calculus identity:
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We will use eqg. (1) to derive eqg. (2). However, eq. (1) doesn’t have the extra x?2
component of eq. (2): e *" vs. x2 - e7@%" To deal with this, we use integration by parts:
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Applying eq. (3) to [, x? - e™#*" - 9x means that:
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which means % =1 and g(x) = (;—:) L gmax’ Plug these into eq. (3):
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When we evaluate the 2" term via the limits:
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Consequently:
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where — [ (;—:) -e7@%" . gx was simplified as: (i) S NCREER 'S



Almost done, except we have to solve: [ e - 9x, which is similar to eq. (1):
foce"‘2 - 0X = ( v ) erf(c), with the difference being that “a” in the argument of the

exponential (i.e. e ¥ vs. e‘a"‘z). We will handle that by substitution of variables to

change the following:
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to look more like foce"‘2 - 0x. First we substitute: y? = a - x?, because this makes eq. (5)

look more like (1): [, e™*" - 9x — [, e™" - dx. If you're having trouble seeing why this is a

good move, note how the letter “a” has disappeared from the argument of the

exponential. Next, we have to deal with the fact that the partial in fo eV - dx is 9%, but

what we need is dy. To resolve this, we use the Jacobian in eq. (6) to change dx into dy:
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Why does this work? According to eq. (6), g(y) = x. Consequently:
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where we used a—y = 1. To summarize:

f f(g(y)) < g(Y)) dy = f f(x) ay f £(x) - Ox - f £(x) - Ox

The hard part of using the substitution of variables eq. (6) is to identify g(y). As we
already decided that y = a - x?, and since x = g(y), we just have to turn y? = a-x? into a
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function of x. First divide out the “a = x2, and next, take the square root of both

y 6g(y)

sides: S =X= g(y) which allows us to evaluate =——
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Putting this all together:

ff(x)-ax =fe‘a'xz - 0x =fe_a'(y?2> ( 11/2> dy = <a1_1/2> -fe‘yz - dy

Last bit, we have to deal with the limits of integration:
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The limits on the left side are for “x”, but we have to make them for “y” on the right side.
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To do so, note the lower limit x=0, when plugged into: = x, makes y = 0. The upper

limit of x=c, when plugged into: %/2 =x,isy=c-a’2 Thus:
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At this point we can use the identity eq. (1): foce"‘2 $0xX = (“ 2) - erf(c) and apply it to:

2

1
1 a'/2c 2 ]
—_ -y-. i
(al/z) fo e dy to see that the answer is:

2 1 1
C__Xz 1 Caz_z 11T/2 1 T[/2 1
foe AT 9x = <al—/2>—[) ey -0y = <ET)-erf(c-a/2)=(2a1/2)-erf(c-a /2) (7)
Finally, we see that, starting from eq. (4):
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When you simplify it: [, x?-e™@% - 9x = ( s ) . erf(c : al/z) — - gmac?
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Substitute in eq. (7): foc e 3%’ . gx = ( ) - erf (c . al/Z) makes (4) become:

This is equation (2), which is what we set out to prove.



