ERF

The "erf" identity:

$$
\begin{equation*}
\int_{0}^{c} e^{-x^{2}} \cdot \partial x=\left(\frac{\pi^{1 / 2}}{2}\right) \cdot \operatorname{erf}(c) \tag{1}
\end{equation*}
$$

The "erf" function itself is used to calculate the area under a bell-shaped (i.e. Gaussian) curve. Bell-shaped curves represent probability for certain phenomena such as the grade distribution of a class. The area of the curve can provide additional information; for example, the area over a certain range represents the probability of getting a certain letter grade. We also used the "erf" function in class to determine things like the average velocity of a gas molecule, or the probability that something is moving "up".

To do so we use this calculus identity:

$$
\begin{equation*}
\int_{0}^{c} \mathrm{x}^{2} \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}} \cdot \partial \mathrm{x}=\left(\frac{\pi}{16 \mathrm{a}^{3}}\right)^{1 / 2} \cdot \operatorname{erf}\left(\mathrm{c} \cdot \mathrm{a}^{1 / 2}\right)-\left(\frac{\mathrm{c}}{2 \mathrm{a}}\right) \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{c}^{2}} \tag{2}
\end{equation*}
$$

We will use eq. (1) to derive eq. (2). However, eq. (1) doesn't have the extra x^{2} component of eq. (2): $\mathrm{e}^{-\mathrm{x}^{2}}$ vs. $\mathrm{x}^{2} \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}}$. To deal with this, we use integration by parts:

$$
\begin{equation*}
\left.\int_{0}^{\mathrm{c}} \mathrm{f}(\mathrm{x}) \cdot \frac{\partial \mathrm{g}(\mathrm{x})}{\partial \mathrm{x}} \cdot \partial \mathrm{x}=-\int_{0}^{\mathrm{c}} \frac{\partial \mathrm{f}(\mathrm{x})}{\partial \mathrm{x}} \cdot \mathrm{~g}(\mathrm{x}) \cdot \partial \mathrm{x}+\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})\right]_{0}^{\mathrm{c}} \tag{3}
\end{equation*}
$$

Applying eq. (3) to $\int_{0}^{c} x^{2} \cdot e^{-a \cdot x^{2}} \cdot \partial x$ means that:

$$
\mathrm{f}(\mathrm{x})=\mathrm{x} \quad \text { and } \quad \frac{\partial \mathrm{g}(\mathrm{x})}{\partial \mathrm{x}}=\mathrm{x} \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}}
$$

which means $\frac{\partial \mathrm{f}(\mathrm{x})}{\partial \mathrm{x}}=1$ and $\mathrm{g}(\mathrm{x})=\left(\frac{-1}{2 \mathrm{a}}\right) \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}}$. Plug these into eq. (3):

$$
\left.\int_{0}^{c} \mathrm{x}^{2} \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}} \cdot \partial \mathrm{x}=-\int_{0}^{\mathrm{c}}\left(\frac{-1}{2 \mathrm{a}}\right) \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}} \cdot \partial \mathrm{x}+\mathrm{x} \cdot\left(\frac{-1}{2 \mathrm{a}}\right) \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}}\right]_{0}^{\mathrm{c}}
$$

When we evaluate the $2^{\text {nd }}$ term via the limits:

$$
\left.\mathrm{x} \cdot\left(\frac{-1}{2 \mathrm{a}}\right) \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}}\right]_{0}^{\mathrm{c}}=\left(\frac{-\mathrm{c}}{2 \mathrm{a}}\right) \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{c}^{2}}-0 \cdot\left(\frac{-1}{2 \mathrm{a}}\right) \cdot \mathrm{e}^{-0}=\left(\frac{-\mathrm{c}}{2 \mathrm{a}}\right) \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{c}^{2}}
$$

Consequently:

$$
\begin{equation*}
\int_{0}^{c} \mathrm{x}^{2} \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}} \cdot \partial \mathrm{x}=\left(\frac{1}{2 \mathrm{a}}\right) \cdot \int_{0}^{\mathrm{c}} \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}} \cdot \partial \mathrm{x}-\frac{\mathrm{c}}{2 \mathrm{a}} \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{c}^{2}} \tag{4}
\end{equation*}
$$

where $-\int_{0}^{c}\left(\frac{-1}{2 a}\right) \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}} \cdot \partial \mathrm{x}$ was simplified as: $\left(\frac{1}{2 \mathrm{a}}\right) \cdot \int_{0}^{\mathrm{c}} \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}} \cdot \partial \mathrm{x}$.

Almost done, except we have to solve: $\int_{0}^{c} \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}} \cdot \partial \mathrm{x}$, which is similar to eq. (1): $\int_{0}^{c} e^{-x^{2}} \cdot \partial \mathrm{x}=\left(\frac{2}{\pi^{1 / 2}}\right) \cdot \operatorname{erf}(c)$, with the difference being that "a" in the argument of the exponential (i.e. $e^{-x^{2}}$ vs. $e^{-a \cdot x^{2}}$). We will handle that by substitution of variables to change the following:

$$
\begin{equation*}
\int_{0}^{c} e^{-a \cdot x^{2}} \cdot \partial x \tag{5}
\end{equation*}
$$

to look more like $\int_{0}^{c} \mathrm{e}^{-\mathrm{x}^{2}} \cdot \partial \mathrm{x}$. First we substitute: $\mathrm{y}^{2}=\mathrm{a} \cdot \mathrm{x}^{2}$, because this makes eq. (5) look more like (1): $\int_{0}^{\mathrm{c}} \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}} \cdot \partial \mathrm{x} \rightarrow \int_{0}^{\mathrm{c}} \mathrm{e}^{-\mathrm{y}^{2}} \cdot \partial \mathrm{x}$. If you're having trouble seeing why this is a good move, note how the letter "a" has disappeared from the argument of the exponential. Next, we have to deal with the fact that the partial in $\int_{0}^{c} \mathrm{e}^{-y^{2}} \cdot \partial \mathrm{x}$ is $\partial \mathrm{x}$, but what we need is ∂y. To resolve this, we use the Jacobian in eq. (6) to change $\partial \mathrm{x}$ into $\partial \mathrm{y}$:

$$
\begin{equation*}
\int \mathrm{f}(\mathrm{x}) \cdot \partial \mathrm{x}=\int \mathrm{f}(\mathrm{~g}(\mathrm{y})) \cdot\left(\frac{\partial \mathrm{g}(\mathrm{y})}{\partial \mathrm{y}}\right) \cdot \partial \mathrm{y} \tag{6}
\end{equation*}
$$

Why does this work? According to eq. (6), $g(y)=x$. Consequently:

$$
\left(\frac{\partial g(y)}{\partial y}\right) \cdot \partial y=\left(\frac{\partial x}{\partial y}\right) \cdot \partial y=\partial x \cdot\left(\frac{\partial y}{\partial y}\right)=\partial x
$$

where we used $\frac{\partial y}{\partial y}=1$. To summarize:

$$
\int f(g(y)) \cdot\left(\frac{\partial g(y)}{\partial y}\right) \cdot \partial y=\int f(x) \cdot\left(\frac{\partial x}{\partial y}\right) \cdot \partial y=\int f(x) \cdot \partial x \cdot\left(\frac{\partial y}{\partial y}\right)=\int f(x) \cdot \partial x
$$

The hard part of using the substitution of variables eq. (6) is to identify $\mathrm{g}(\mathrm{y})$. As we already decided that $\mathrm{y}=\mathrm{a} \cdot \mathrm{x}^{2}$, and since $\mathrm{x}=\mathrm{g}(\mathrm{y})$, we just have to turn $\mathrm{y}^{2}=\mathrm{a} \cdot \mathrm{x}^{2}$ into a function of x. First divide out the " a ": $\frac{y^{2}}{a}=x^{2}$, and next, take the square root of both sides: $\frac{y}{a^{1 / 2}}=x=g(y)$ which allows us to evaluate $\frac{\partial g(y)}{\partial y}$:

$$
\frac{\partial g(y)}{\partial y}=\frac{\partial\left(y / a^{1 / 2}\right)}{\partial y}=\frac{1}{a^{1 / 2}}
$$

Putting this all together:

$$
\int f(x) \cdot \partial x=\int e^{-a \cdot x^{2}} \cdot \partial x=\int e^{-a \cdot\left(\frac{y^{2}}{a}\right)} \cdot\left(\frac{1}{a^{1 / 2}}\right) \cdot \partial y=\left(\frac{1}{a^{1 / 2}}\right) \cdot \int e^{-y^{2}} \cdot \partial y
$$

Last bit, we have to deal with the limits of integration:

$$
\int_{0}^{c} e^{-a \cdot x^{2}} \cdot \partial x \rightarrow\left(\frac{1}{a^{1 / 2}}\right) \cdot \int_{?}^{?} e^{-y^{2}} \cdot \partial y
$$

The limits on the left side are for " x ", but we have to make them for " y " on the right side. To do so, note the lower limit $x=0$, when plugged into: $\frac{y}{a^{1 / 2}}=x$, makes $y=0$. The upper limit of $x=c$, when plugged into: $\frac{y}{a^{1 / 2}}=x$, is $y=c \cdot a^{1 / 2}$. Thus:

$$
\int_{0}^{c} e^{-a \cdot x^{2}} \cdot \partial x=\left(\frac{1}{a^{1 / 2}}\right) \cdot \int_{0}^{c \cdot a^{1 / 2}} e^{-y^{2}} \cdot \partial y
$$

At this point we can use the identity eq. (1): $\int_{0}^{c} \mathrm{e}^{-\mathrm{x}^{2}} \cdot \partial \mathrm{x}=\left(\frac{\pi^{1 / 2}}{2}\right) \cdot \operatorname{erf}(\mathrm{c})$ and apply it to: $\left(\frac{1}{a^{1 / 2}}\right) \cdot \int_{0}^{a^{1 / 2} \cdot c} e^{-y^{2}} \cdot \partial y$ to see that the answer is:

$$
\begin{equation*}
\int_{0}^{c} e^{-a \cdot x^{2}} \cdot \partial x=\left(\frac{1}{a^{1 / 2}}\right) \cdot \int_{0}^{c \cdot a^{1 / 2}} e^{-y^{2}} \cdot \partial y=\left(\frac{1}{a^{1 / 2}} \frac{\pi^{1 / 2}}{2}\right) \cdot \operatorname{erf}\left(c \cdot a^{1 / 2}\right)=\left(\frac{\pi^{1 / 2}}{2 a^{1 / 2}}\right) \cdot \operatorname{erf}\left(c \cdot a^{1 / 2}\right) \tag{7}
\end{equation*}
$$

Finally, we see that, starting from eq. (4):

$$
\int_{0}^{c} x^{2} \cdot e^{-a \cdot x^{2}} \cdot \partial x=\left(\frac{1}{2 a}\right) \cdot \int_{0}^{c} e^{-a \cdot x^{2}} \partial x-\frac{c}{2 a} \cdot e^{-a \cdot c^{2}}
$$

Substitute in eq. (7): $\int_{0}^{c} e^{-a \cdot x^{2}} \cdot \partial x=\left(\frac{\pi^{1 / 2}}{2 a^{1 / 2}}\right) \cdot \operatorname{erf}\left(c \cdot a^{1 / 2}\right)$ makes (4) become:

$$
\int_{0}^{c} x^{2} \cdot e^{-a \cdot x^{2}} \cdot \partial x=\left(\frac{1}{2 a}\right) \cdot\left(\frac{\pi^{1 / 2}}{2 a^{1 / 2}}\right) \cdot \operatorname{erf}\left(c \cdot a^{1 / 2}\right)-\frac{c}{2 a} \cdot e^{-a \cdot c^{2}}
$$

When you simplify it: $\int_{0}^{c} \mathrm{x}^{2} \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{x}^{2}} \cdot \partial \mathrm{x}=\left(\frac{\pi}{16 \mathrm{a}^{3}}\right)^{1 / 2} \cdot \operatorname{erf}\left(\mathrm{c} \cdot \mathrm{a}^{1 / 2}\right)-\frac{\mathrm{c}}{2 \mathrm{a}} \cdot \mathrm{e}^{-\mathrm{a} \cdot \mathrm{c}^{2}}$
This is equation (2), which is what we set out to prove.

