
ERF 

The “erf” identity: 

∫ e−x2
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The “erf” function itself is used to calculate the area under a bell-shaped (i.e. Gaussian) 

curve. Bell-shaped curves represent probability for certain phenomena such as the 

grade distribution of a class. The area of the curve can provide additional information; 

for example, the area over a certain range represents the probability of getting a certain 

letter grade. We also used the “erf” function in class to determine things like the average 

velocity of a gas molecule, or the probability that something is moving “up”.  

To do so we use this calculus identity: 
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                     (2) 

We will use eq. (1) to derive eq. (2). However, eq. (1) doesn’t have the extra x2 

component of eq. (2): e−x2
 vs. 𝐱𝟐 ∙ e−a∙x2

. To deal with this, we use integration by parts: 

∫ f(x) ∙
∂g(x)
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∙ ∂x
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+ f(x) ∙ g(x)]0
c                         (3) 

Applying eq. (3) to ∫ x2 ∙ e−a∙x2
∙ ∂x

c

0
  means that: 

f(x) = x      and    
∂g(x)

∂x
= x ∙ e−a∙x2

 

which means  
∂f(x)

∂x
= 1  and  g(x) = (
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. Plug these into eq. (3): 
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When we evaluate the 2nd term via the limits:  

x ∙ (
−1

2a
) ∙ e−a∙x2

]
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Consequently: 
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where − ∫ (
−1

2a
) ∙ e−a∙x2

∙ ∂x
c

0
 was simplified as: (

1
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) ∙ ∫ e−a∙x2
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. 



Almost done, except we have to solve: ∫ e−a∙x2
∙ ∂x

c

0
, which is similar to eq. (1):  

∫ e−x2
∙ ∂x

c

0
= (

2

π
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2⁄
) ∙ erf(c), with the difference being that “a” in the argument of the 

exponential (i.e. e−x2
 vs. e−𝐚∙x2

).  We will handle that by substitution of variables to 

change the following:  

∫ e−a∙x2
∙ ∂x

c

0

                                                                        (5) 

to look more like ∫ e−x2
∙ ∂x

c

0
. First we substitute: y2 = a ∙ x2, because this makes eq. (5) 

look more like (1): ∫ e−a∙x2
∙ ∂x

c

0
 →∫ e−y2

∙ ∂x
c

0
. If you’re having trouble seeing why this is a 

good move, note how the letter “a” has disappeared from the argument of the 

exponential. Next, we have to deal with the fact that the partial in ∫ e−y2
∙ ∂x

c

0
 is ∂x, but 

what we need is ∂y. To resolve this, we use the Jacobian in eq. (6) to change ∂x into ∂y: 

∫ f(x) ∙ ∂x = ∫ f(g(y)) ∙ (
∂g(y)

∂y
) ∙ ∂y                                             (6) 

Why does this work? According to eq. (6), g(y) = x. Consequently: 

(
∂g(y)

∂y
) ∙ ∂y = (

∂x
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) ∙ ∂y = ∂x ∙ (
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∂y
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where we used 
∂y

∂y
= 1. To summarize: 

∫ f(g(y)) ∙ (
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The hard part of using the substitution of variables eq. (6) is to identify g(y). As we 

already decided that y = a ∙ x2, and since x = g(y), we just have to turn y2 = a ∙ x2 into a 

function of x. First divide out the “a”: 
y2

a
= x2, and next, take the square root of both 

sides:    
y

a
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= x = g(y) which allows us to evaluate 
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Putting this all together: 

∫ f(x) ∙ ∂x = ∫ e−a∙x2
∙ ∂x = ∫ e
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Last bit, we have to deal with the limits of integration: 
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The limits on the left side are for “x”, but we have to make them for “y” on the right side. 

To do so, note the lower limit x=0, when plugged into: 
y

a
1

2⁄
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limit of x=c, when plugged into: 
y
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1
2⁄ . Thus:  
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At this point we can use the identity eq. (1): ∫ e−x2
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c
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Finally, we see that, starting from eq. (4): 
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∙ ∂x
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Substitute in eq. (7): ∫ e−a∙x2
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c

0
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When you simplify it:  ∫ x2 ∙ e−a∙x2
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This is equation (2), which is what we set out to prove. 


